はじめに

本論は人間科学を議論する——人間科学では、まさに自己を正面から問うことを通して、それがいかにありうるか問われているのだが——には程遠いものとなるかもしれない。著者は認知科学的アプローチを用いながら、子どもや学校における児童・生徒が物理・社会的環境との相互作用を通じてどのような知識を獲得し、いかに発展的変化を遂げていくかについて多少の研究を進めてきた。われわれが心理学を学び始めたとき、よく知られるようにまだ行動主義のパラダイムが存続しており、そこでは客観的に測定可能な次元でのデータを集積することにより、人間の行動を説明し、予測し、さらには制御する可能となるとする見方が支配的であった。ここでは、人間発達の基軸ともいえる「知識」であるとか「理解」といった用語を含むもの、動物実験との連続的での「学習」概念、よくても分化された知覚や記憶について明らかにすることこそ、人間の知識についての研究のそれという「すり替え」があったように思う。勿論このような枠組みを共有する限り、人間発達にかかわるおもしろいような論的検討（自己中心的言語をめぐるビジェとヴィゴッキーの論争、あるいは言語獲得や生得的制約をめぐるビジェとチョムスキー・フォーダーの論争のような）など生まれようがなかった。
ここに大阪大学人間科学部20周年記念として刊行された「人間科学への招待」（1992）がある。ここで「人間科学とは何か」と「人間科学の方法論」の「サンドイッチ」に関して「見る・知る・変わる・悩む・遊ぶ・生きる」といったテーマを組み込む形で構成されている。基本的には、ここにはさまざまなテーマは（人間の活動にかかわることであれば）いかなるものでも持ち込むことができるとして「ゆるい連合」の形態を人間科学に認めようとするのである。このうち、「知る」、「変わる」というテーマが小論の展開をかかわっているということで、本特集に参加する意義を押さえておきたい。筆者は、この「知る」というテーマは人間独自の営みを単に「わかりやすく」するという指針に、先に述べたような知観、記憶といった細分化された単位ではなく基盤的課題を全盤書き換えるという意図をもつ人間科学独自の設定の方法であると考えたい。さらに立ち入っていうならば、大阪大学人間科学部の創設者である1972年あたりから、心理学においても「知識」に関する研究が始まり、新たな時代をもって一朵なっている。

ところで、上記人間科学部の設立にはピアジェの「人間科学序説」（1970）がかかわっているということ。ピアジェはこの著書のなかで「人間科学の認識論の特殊性とその基礎」という節において、歴史的・実験的学問は演繹的学問よりもおくれて成立したということを指摘している。筆者はこの観点において、ピアジェの「人間発達の心理のモジュール性を越えて—」（カミナロスミス著、ミネルヴァ書房、1977）の翻訳に携わった。著者であるカミナロスミスはかつてジュネーブ大学でピアジェの門下生であった人であるが、現在、ピアジェ理論を批判しながら彼の構成主義的立場を擁護する一方、ピアジェの宿敵でもあり、生得主義の旗手でもあるチョムスキーやフォーグナーの理論との結びを企てるといった意味でその理論仮説を提示しようとする。ここでは、子どもが発達の初期から言語や物理、数学といった各領域にかかわる理論を構成していること、さらにそれらを次第に柔軟に、かつ創造的に再構成していくメカニズムの検討がおこなわれている。ピアジェが指摘した認識論的仮説がここではより鮮明に描き出されているといってよいであろう。

ピアジェの指摘を個体発生のレベルに置き換えるならば、子どもが有する理論と現実に生じるような現象（データ）はいかに関連付けるかという問題として考えることもできる。自己のもつ理論と相容れないような観察データが示唆されるような場合、その理論はいかに変化するか（あるいは、しない）のであろうか。さらに、認識論的にみて子どもの理論がクーン（Kuhn）のいう意味での「パラダイムの変換」を遂げるのは教育とのかかわりにおいていかに可能であるのだろうか。実は、こうした問題についての研究はまだ始まったばかりだといってよいのである。一般に教育の文脈では、このような問題を考えるとき、理論は外界のデータに対応するように変化可能であるとする楽観的な見方に立つ傾向があったと思われる。たとえば、行動主義を基本とするならば子どもは「受動的な情報の貯蔵者」とみなされてしまう。こうした「見込み違い」は、教育研究の理論と方法の改定を大きく阻害してきたといってもよいであろう。本論では、以上のような問題意識に立ちながら、教育（授業）という営みにおける子どもの認識的変化や発達を両者の

—— 130 ——
相互の関連から論じてみることにしたい。

Ⅰ．今日の学習研究の問題点

Ⅰ．授業とその研究視点の変遷

教育活動の中核を成す授業研究とは、教育内容、および教育方法の統一された場としての授業を直接、間接に対象とするに留まらず、認識論的、社会論的、検討にまで及ぶような問題領域だと考えられる。このような総合的高い問題領域に対し、心理学は、伝統的に行動主義パラダイムの影響下にあって総じて授業の研究の狭い部分しかその対象とし得なかったという歴史を負っている。

一般に授業では「指導目標」（しばしば観察可能な行動レベルの表現を用いて「行動目標」とされることがある）に照らした教授活動の「効果」が問われるのが通例となっているが、授業の研究においてその「効果」を自覚的に取り上げたのは心理学であったといえるかもしれない。かつてスキナー（Skinner）はある小学校の授業を参観して「教師はまるでなにも教えていない」と評したといわれる。彼は学習を「よい作業習慣」の形成とみなした上、刺激、反応、強化といった概念を用いてプログラム学習を考察し、その原理はまるで教育のように今日でも教育心理学のテキストの「学習」を扱うところで知られている。

ひるがえって、デューイ（Dewey）の経験主義の学習理論にもとづく「新教育」の影響下にあった一時期、わが国の学習指導要領ではいわゆる児童中心主義の立場に立ちながら「教師が必要で、それを指導だと考えるような教師中心の考えは、今後すっきりと捨ててしまうなければならない」ことを強調し、問題解決学習を推し進めていた。このような立場がスキーナーの学習観とは対照的であることがみてとれよう。「自由研究」などの創設、「…プラン」と銘打った学校や地域独自の教育課程を次々提案されたのもその具体的な現われである。さらに、問題解決学習の追求とは単に学習の方法を意味するに留まらずここでは教育内容の検討という課題を内包していたことも注目したい。よく知られるように、やがてこうした「新教育」の流れは教育と科学の結合という視点から浮かび上がる系統学習の構想、そして「基礎学力の低下」という指摘の前に消え去っていったこともよく知られている。

当時、系統学習の推進、基礎学力低下の克服、より具体的には「指導性の後退」が指摘されるなかで、「学習の効果を上げる」という問題は授業研究の重要な一端を担うべき課題となりえたといってよい。そこにスキーナー流の「学習」の理論をもとに、あたかも授業の領域一般的な意味での教育方法を構築できるとするような暗黙の仮定は、心理学における授業研究を長期にわたって支配してきたとも見えることができる。しかも当時、問題解決学習に対する系統学習の提案が一面では抽象的な認識論の色彩が濃いという性格を有していたということも、いわゆる技術論としての「学習」理論の入りこむ余地があったといえよう。異なる強化スケジュールを変数として用いた動物実験を含み、知覚や記憶学習を扱う実験室実験の成果が暗黙のうちに教科学習に対しても
応用されるべきだとする極めて楽観的な態度を随所に認めることができる。教室での教授・学習を問題とする場合であっても、基本的には実験室に適用された方法論が採用され、厳密に統制された条件下での教授法の効果を抽出することになる。「伝統的な教授法に対するプログラム学習」「プログラム学習と発見学習」などは教授・学習研究の典型的なテーマとなった。教育心理学研究がその課題として自覚しなければならなかったいわゆる不毛性の問題はこうした研究の構造そのものにかかわっていたのだろうということができる。その後、クロニック（Cronbach）によって提唱されたATI（適性処遇交互作用）という概念の装置を組み込み、学習指導の最適化の観点から相対的な教授法の優位性を求める試みも現われる。この場合も、果たして我々の学習とはここで仮定されるような学習者の「適性」によっていかに規定されるものなのか、といった理論の成立自身にかかわる問題の検討は極めて弱いものであった。したがってとして心理学における授業研究に共通した方法論的弱点は学習内容とは独立した教授法の追求という枠に留まっていたということにあったといえる。現実の授業の分析をおこない、授業行動の改善への寄与を意味したフランダース（Flanders, 1987）の相互作用分析も数値的な側面からの授業評価にとりまり、子どもの学習過程は切り離されて、一般的な授業論以上のにありえないかったのである。

よく知られるように、1960年代に入れてアメリカとソビエトにおける科学技術の発展はいわゆる教育の「現代化」の流れをひきおこした。スプートニック・ショックがその引き金になったように、科学技術国家を競うという事態で、いわば科学主義ともいえるような形で「教える側」の論理にもとづく教育内容の再編成が進められるという状況がもたらされたのである。ブルナー（Bruner, 1963）が「教育の過程」で示した学習可能性に関するよく知られた仮説は、現代科学の体系を教育内容として構造化すると同時に、学習者の認知をも構造化されるものとみなす立場を表明するものであった。科学や文化的成果を系統的に学習させるという「現代化」の流れのなかで、心理学はブルナーの学習理論を取り込み、構造の学習とセットで提案された学習形態としての発見学習の有効性を追求するにとどまらず、それまでの古いレディネス観の見直し、発達と教育可能性の問題の検討といった側面からの議論に関与しようとした経過を認めることができる。ここでは、科学史における原発見をショートカットした再発見としての学習過程は「発見のしかた」を身につけることにより、学習者を内発的に動機づけ、学習の転移を促進するという定式化がなされた。認知論的立場に立つブルナーにしてみれば外的強化による学習を是認することとはできず、学習者によって構成されるような過程を基本に据えながら授業モデルを構想したのだろうと思われる。しかし、現代科学の成果を縮小したともいえるようなカリキュラム、同時に発見過程を基軸とした学習の構想は、子どもの十分な認識論的分析が後ろ盾になっていたことなどからしても性急すぎたし、それにに基づく現実の教育目標の達成は「教え込み」を容認するほどの制御性の色彩の濃いものにならざるをえなかったのである。一方、ピアジェ（Piaget）の認識論などを踏まえながら、もう一つの「現代化」運動を推し進めていた遠山啓らが、人類がじつに9世紀ものの年月をかけて発見した「0の概念」をいかにして小学生に発見させようのかと指摘
し、教材の開発を授業構成の基本的要因としながら、教育の意図性、計画性を強調するという方向性こそ、むしろ正統な視点であったといえよう。

こうした事情のなかでも、授業という営みをその長期にわたる影響性、すなわち発達的な見直しのなかわりにおいて問う「発達と教育」の論争は、授業研究を単に観察的な効果を探る技術論に留めないという観点からみても一定の意義をもつものであったといえる。主にザンコフなど、ソビエトの授業研究の影響を受けながら、「ニコル」の均衡化による発達を自生的、自律的な「自己運動」の過程とみなし、教授可能性を認めないものとする批判がなされたことはわれわれの記憶にも新しい。それはしばしばゲゼルの成熟説と同一視されるほどであったことからも当時の批判の徹底ぶりをうかがうことができる。こうした教育の主導性の考え方を支える理論として文化-歴史的アプローチをとるヴィゴツキーへの注目を始めたのもこの時期であった。彼の心理学が「教授・学習の発達への先回り」を主張する考え方として取り入れられると同時に、それはブルーナーの学習論を補完するような理論として位置づけていたといってもよいであろう。ヴィゴツキーが学校での系統的な言語的教示を通じて、すなわち「上から下への」道すじで獲得される「科学的概念」を「生活的概念」から区別して定式化したこと、「教育の最近接領域」の概念を提唱したことは、これ以来、わが国でも馴染みの理論となって現在に至っている。

こうして、いわばデビューの構想とは逆の方向をたどるかのように、授業の新たなパラダイムは子どもの学習の「経験」や「活動」といった側面を次第にはぎ取り、言語を媒介とする教授活動の側のウェイトをかけるような方向性を求めることがなるのである。見方が変えるなら、教育の効果を上げるという時代的要請に応えるには、理論としてはまったく異なるような要素論的なスカラーン流の学習制御の考え方、およびヴィゴツキーの「教育の最近接領域」の理論を機能的なレベルにおいて結びつけ、改良化してしまうといった側面のあったことは否めないであろう。1970年代、学習の「つまづき」といった形を変えて発生してきた基礎学力の低下という現象、さらには学習者自身による操作的なスキルを重視するような知識構の獲得といった傾向もこうした学校経験の「効果」ともなたれたと解釈される。一方では、教育の直接的な営みを担う教師、児童・生徒はともに科学の成果である知識の単なる受容者にすぎないのか、という反省が提出されるに至るのである。

たとえば数教協では、数学の理解に「ゲーム（正負の原理の学習にトランプ・ゲームを導入する。面積学習に陣とゲームを用いるなど）」を取り入れたり、「ものづくりの実践」を取り入れる、あるいは「たのしい授業」を追求するという仮説実験授業の提案もそのような反省のもとでつくられた。ここには、学習者を「学びの主体」として位置づけるということ、しかもそれは理論レベルでの学びの体験を通じたもので、現代化の流れのなかで忘れ去られてきた学習の「活動」と「経験」という観点からの授業実践の見直しでまで及ぶ広がりをもつものであっただけといえよう。ただ、こうした流れを基本的に認めてながらも板倉（1979）は、数教協のようにもともと楽しいはずのゲームを取り入れることにより授業が楽しくなるとする見方に疑問を投げ
かけ、認識の社会的構成そのものが楽しさの源流ではないかという今日の認知心理学が課題としていることにも通ずるような指摘をおこなっていて興味深い。

1980年代に入って、心理学では70年代におこった行動主義から認知科学的アプローチのパラダイムが定着し、授業研究の近接法も実験室を抜け出して教室での活動やさまざまな実践の現場での活動を「語る」という方法論を強めたのであった。今のところ、その「語り方」は、さまざまなであってよい。たとえば、「掛け算」の手続きとその意味の結びつきを高めるという趣旨でおこなった小学校4年生における実践過程を分析したものとして知られるランパート（Lampert, 1986）の報告などはその代表的なものであろう。取り立てて新しさのないような数の分解や統合という操作を、教師の設定した具体的な課題状況のなかで、ある場合には直感や既知の手続きを生かしながら操作し、その過程でぐるぐる自然に必要な原理を発見し、適用していくという生徒の活動の特質を新たな授業研究のあり方として示したものである。

「授業の認知科学」といってもよい新たなアプローチは、こうして授業をその外側からながめる、あるいは実験室実験の成果の適用というような外存的方法から、授業そのものへと入り込み、そこで子どもがなにをやり取り、なにを獲得しているか、さらには行動主義のもとでは分析対象からはずれていた「理解」の内実や変化をも記述するといういわば内在的方法へと転換する兆しを与えたといってよいであろう。

2．授業における「学習」の諸相

心理学では、伝統的な方法を用いての対辯論学習や系列学習といった学習研究が盛んな時期にあっても、授業研究ではそこで扱われる課題や性質上、必ずしも狭い意味での「学習」概念にとらわれることなく、現実に用いられる教材を用い、いわば認知的接近法といってもよい独自の取り組みが存在したといってよい。しかしながら、今日でも授業では学習指導がキー・コンセプトとされていることからわかるように、「いかに児童・生徒の学習効果を上げるか」という課題に焦点化する傾向は一貫しており、その努録から自由ではないと考えることができるのである。

一方、近年の認知心理学では「学習」を「知識の獲得」として定式化するようなパラダイムの転換を遂げたものの、今のところその成果と授業研究とのパイプは依然としてそう太いものではない。授業実践にかかわるべく開始された知識の獲得研究は1977年に出版された「学校と知識の獲得」（Anderson, 1977）などをその契機としているが、ここでは知識が生徒の頭のなかでどのような表象（representation）をとっているのかという関心から出発している。知識のこうした捉え方は、いわゆる情報処理アプローチにおいて不可欠な方法論でもあり、具体的には人間の記憶のモデルにしたがって内面的知識の働きを説明するという限りにおいて有効なものである。ここでは、一般に知識といわれるものの基本単位は「主語」と「述語」からなる命題であり、したがって知識は、細かく命題の階層的なネットワークとして表現される。いわばカテゴリー間の統語論的、論理的記述にはかかならない。しかもこうした「知識」は、学び手自身にはかかわりなく独
立に存在し、彼らはそれを「正しく」符号化し、記憶の貯蔵庫に収めて、必要に応じて想起することができる知識の獲得過程とみなされてしまう。一時期、知識や文章理解の研究においてスキーマという概念が盛んに用いられるに至ったのも、基本的にはこうした研究の流れにあったとみてよいであろう。

記憶やテキスト処理といったモデル化、その妥当性の検討においてはデータとして「現実の」過程が反映しているのであるが、授業場面での学習を考えるなら、こうした研究は直接に適用されないことが多いのである。すなわち現実の学習とは、そのようなモデルとして抽出されるようなプロセスよりはるかに複雑だというばかりでなく、しばしば学習者自身の独自の経験や関心に基づいてある程度使用することができる「素朴理論」を構成していること、さらにその「理論」をベースとしてしながら自分なりの意味を見いだすような認識的動機やそれに制約されるような構成をおこなうとするということによる。

同時に、以上のような知識自体を見直す契機ともなるような指摘が、日常認知、状況論的アプローチをとる研究者によってエスノグラフィ的なフィールド調査をもとにして提出されてきた。レイブ（Lave, 1988）は、先に述べた記憶モデルにもとづく立場では、知識が貯えられるされる「精神とその内容が、あたかもきちんと整理された道具箱」のようにみなされてきたと批判しながら、ソーンダイク以来、伝統的に学習研究の一領域を築いてきた「学習の転移」に関する実験研究の知見は、現実の課題を解決するような場面ではほとんど役に立たないことを指摘している。実際にスーパーマーケットで損得にもかかわることから必要にせまられておこなうお金の計算と、実験室や教室のような訓練場面でおこなう紙の上での計算の間に学習の転移はおこらないし、それぞれを「計算」という共通項で結びつけることすらできないという。

さらにサックス（Saxe, 1991）は、ブラジルの5〜15歳くらいの子どもが「通り（street）」で何種類ものキャンディを売るという場面をつぶさに観察している。彼らはブラジル経済の激しいインフレという状況のなかで、しばしば変動する仕入値に応じて小売値を調整し、しかも仲間のキャンディ売りとの値段の関係を考慮しなければならない、その上で実際にまとめて何本をいくらで売るかを考える場合に「比率」を用いながら計算をおこなっているという。しかもここで用いられる計算の仕方は彼ら独自の方法によっており、その計算は学校で教えられるような算数計算の成果ではなかったのである。

このような場面では、計算の手続きがおおのおのの具体的活動のなかに埋め込まれているものとして考えられている。したがって、一連の手続きは活動する当事者にとってそれぞれ意味のあるものであり、同時にそのような意味は「自己」との強い関連性を有するものだといえるのである。言え換えるなら、生活、課題状況のなかにあって、ある課題にかかわる問題点や問いの設定、一定の制約条件のもとでの解決策、さらにその妥当性などをわかり生活の流れに照らして自らモニターしなければならない。こうした「学習」の一連のサイクルに照らしても、現実場面での認識活動が学校での学習とは構造的に異なっているということができる。学校では、
「問い」と「正解」の保持者は教師であり、学習者はその間を教室でのルールにしたがって機械的にきき来をするような場に置かれている。しかも、教室で与えられる課題とは、生活的な認識的な必要性や具体的なコンテクストが拾われるものであることが多い。ブラウンら（Brown, Collins, & Duguid, 1989）は、こうした教室での活動を「模造的（ersatz）」活動だと指摘し、ここで得た知識はやはり模造的活動という閉じた範囲のなかでしか適用できないことを示唆している。やはりエスノメソドロジーの観点から、メーヘン（Mehan, 1979）は日常の会話では「質問－応答－謝礼」という単位が基本となっているのに対し教室言語では「質問－返答－評価」という単位がここでの会話構造を形づくっており、「質問」と「評価」はもっぱら特権的役割を与えられた教師に付与されていることを指摘している。

認識論的な観点に立ち返るなら、レイプやブラウンらも指摘するように、しばしば「知識というもの」があるままであった形で、その境界や内部構造があたかも学習者とは無関係に、したがって客観的に存在しているかのような領域としてみなされてきたのではないかという問題は、知識獲得を検討する上での根本的な問題として捉えてみる必要があると考える。人々が学ぶべき知識が統語論的な形式を備えており、学習者の外部に確定的、かつ「客観的に」存在するかのような見方は、たとえも最初にみた情報処理的アプローチに限らず、教育そのものを支えるような「理論」としてありはしかなかったのではないか、とりわけ科学的知識は日常的な自己とはかからわれのない外在的なものとして位置づけられ、教室はその「客観的」知識を伝達する場として認知されてきたっていってもよいし、学習者はそのような知識の再生成を営む存在として位置づけられてきたのだといってよい。その意味でも先に指摘したように、授業研究が「いかに学習効果を上げるか」の問題意識に留まることは不十分だと考えられるのである。

こうした視点から授業における知識獲得の組み替えを構想するにあたって、最近の科学哲学から提案されるような「テクストとしての自然」（野田, 1993）に囚んで「テクストとしての科学」という位置づけたで認識の在り方を捉えてみることもできよう。野田は、最近のテクスト理論を中心に据えたガダマーやリクール以降の解釈学の方法に注目しながら、科学が永遠不変の認識成果ではなく、歴史的・社会的に拘束された認識活動であることを指摘し、近代科学からポスト近代科学への方向転換を一義的に解釈の対象としての「自然という書物」から「自然というテクスト」への置き換えとしてとらえようとする。今日、なお1960年代以降の「教育の現代化」の方向性をそのポジティブな面において評価するのは容易ではないか、科学の成果を教育内容として正当に位置づけることにおいて大きな誤りがないとすれば、教育内容としての科学的知識と学び手との関わりを問うてみることにおいても上記のような視点は見逃すことができないのではないだろうか。

言い換えるなら、知識－学び手を解釈学的関係として定義することによって、知識獲得を「伝達」過程の一連のシステムから解放し、学び手の構成的な理解活動として捉え直すことへと通ずる方向性がみえてくるのではないだろうか。さらに立ち入るならば、このような理解活動に
あっては学び手の構成の土台を成す「理解における自己関与性」とでもいえる側面を考慮せざるをえないだろう。この「理解における自己関与性」とは、認識論における語用論的観点を具体化したものであるが、同時にそれは学習者の知識観にもかかわるような機能を果たし、知識のコピーではなく相互作用をおこなうような構成者としての性格を一層明確にする概念である。

3. 認知心理学における知識の獲得研究

認知心理学研究と授業における知識構成の問題の接点を研究者研究として位置づけながら、子どもが日常生活を通じていくる知識を獲得しているのか、さらに授業のなかではいったい彼らはなぜを学びうるのかといった問題を考えておくことにしよう。ここでは、とりわけて意図的な教育を受けることのない日常生活を通じ、彼らが自ら構成する知識に焦点を当てつつ、そのような知識がいかに変化可能かを展望してみることにしたい。

基本的には授業が有する機能とは、子どもが日常的な認識活動を通じて獲得困難な知識を教育を通じて実現することにあるといえる。その意味でウィゴツキーは生活的概念を学校で系統的な教育を通じて獲得される科学的概念を区別し、それは主に教師の計画的な言語的教示を媒介として、非自然的な過程、あるいは「上から下へ」の道すじで獲得されることを強調したのである。より具体的には、海老（遠近法）や「0の概念」などをあげ、これは自然発生的に任せておき、それが自然発生性に任せたのではその獲得に限界のあることを見抜いたもので、知識心理学においてもレズニック（Resnick, 1986）は数学の基本を構成する加法的構造は自然に獲得されるであろう、「比例」や「単位」などのような乗法的構造、さらには「確率」などの概念の獲得は困難を伴うことを示唆してきた。にもかかわらず、すでに触れたように「教育と科学の結合」という教育の基本的な目論見が必ずしも成果を上げてこなかったことの一部は、心理学からみるとどのように考えられるのであろうか。

最近の認知心理学的研究では、子どもが教室の授業に望む場合、彼らが自ら構成してきた知識体系が媒介的に関与することを明らかにしてきた。子どもの認識活動は個々の情報を「ありのまま」に受け取り、ストレートに集積するというプロセスをたどるのではなく、すでに彼らは世界のいくつかの領域について自生的な理論、あるいは非公式の（informal）科学といえどもよいものを普遍的に構成しているとする考え方がその背景にある。たとえばケアリー（Carey, 1985）によれば、このような非公式の理論のうち素朴心理学（「心の理論」といってもよい）に加えて素朴物理学的理論システムが、特に早い段階から獲得される、しかもそれによって認識的活動が制約され、極めて多様な現象を目的のあたりにしたがって必要な情報を効率的に選択させ、他の情報をあらかじめ排除するような機能をもつことを指摘している。これについていう論理の基本的な特徴は、その領域における現象がなぜ起こるかについての説明の機械を備えているということにあろう。この意味では、人々がもとと考えられるような「スクリプト」のようなものである。それをもって自体に含まれないということから区別されるのである。このように、子どもが素朴な理論を有し、それによって個々の学習が規定されるとするような見方は、いわばわれわれの認識活動が基本
本的には理論的であり、さらにはいわゆる解釈学的循環という性格を帯びたものとしてみることにも通ずるといってよい。

波多野（1990）は、このような問題にかかわって「公式の科学がそれと対応する非公式の科学——学び手の誰もが既にもらっている——にもとづいて教えられているとしたら、もっとずっと多くの人々が公式の科学を効果的に学ぶことができるかもしれない」とし、これまでの教育では学習者が有する非公式の科学は低い評価しか与えられず、したがって公式の科学の性質自体がまだ十分明らかにされていないことを指摘する。波多野によれば、人々が一般的に不得手なのは公式の科学であって、非公式の科学についてはむしろ誰もがそれを見得としているのではないかという。このように、学校における計画的な授業を通じて、なお科学的概念の獲得は容易ではないという現象を非公式の科学、あるいは素朴理論と科学的理論の間の非連続的な関連という観点から見直することが可能である。やはり科学的概念の教育について、子どもの既有知識に重点を置きながら教室での知識獲得を検討しているオズボーン（Osborn, 1985）も彼ら独自の論理が授業からの影響を受けにくいことを繰り返して指摘している。彼らは、レズニックらと同様、授業において学習者は知識を外部から与えられたものとして内面化するのではなく、彼ら自身によって能動的に構成されていくのだと考える。しかし、しばしば授業を終了した後においてさえ、もとの知識に戻ってしまったが、よくも新旧二つの知識は互いに関連することなく、それぞれが残存することになる傾向がある。そのような一つは「彼らの固有のもの」であり、もう一つは「テスト用」である。

ひろがって、わが国においても東井義雄らがおこなって以来、教科における子どもの「つまづき」の分析や「誇り分析」も試みられ、心理学においても、ガニエ（Gagne, 1962）らによってある学習が成立するにはその以前になにかがなければならないかを明らかにするタスク・アナリックもとづく学習の階層的モデルなどが提案されてきた。ここでは、一般的な知識を段階的に獲得していくことが学習の基本であると示すような見方が背景として存在する。しかし、果たしてわれわれの学習とはここで仮定されるように、当該の学習の最終的なゴールから逆算され、そこから導かれた基礎的内容を順次積み重ねていくというような形式的、かつ完結的な性質を内在的に有しているのである。たとえば、先に述べた非公式の科学を構成するような場合などではおそらくこのような説明の適用を超えるプロセスが想定されるし、さらには日常認知の研究が示すように、実践的、具体的な課題状況のため必要な知識を求める、それをある意味では道具として利用するということはしばしば観察されることもある。その意味で授業を構想する、あるいは分析する、あるいは分析することがなされている場には、学習の成立そのものを改めて問い直す課題を正面に据えねばならないのである。こうした観点で最近の研究動向を踏まえるならば、当面、学習者がもつ素朴理論と教科で扱われるような科学理論の非連続的な（ケアリーによれば「共約不可能な（incommensurate）」構造を丁寧に記述するような作業が不可欠だと思われる。さらにその上で旧理論から新理論への移行がいかに進むのかが明らかにされねばならない。ケアリーは、このような
移行には「弱い意味での変化」と「強い意味での変化」があるという。前者は知識の渐進的な蓄積であるが、後者はクーン（Kuhn, 1962）がパラダイム変換において示したような新旧理論系に含まれるおのおのの中心概念の変換を伴うような理論の再構成化を意味する。この再構成化によって、①理論で説明される現象領域の変化、②説明メカニズムの変化、③そこで用いられる基礎的概念の変化が生じると仮定されている。

ケアリーは幼児から児童、大人に至るまでの生物学の領域について、彼らの理解的な変化を詳細に調べ、生物学と心理学期画の混在するような素朴理論から科学的な生物学への移行は10歳あたりの再構造化の過程によって遂げられることを主張した。たとえば、幼児に「生きていないもの」の例を挙げさせると、「絹毛、鈍、ドア」といった例を挙げることは極めて少なく、「死んでしまったペット（あるいはジョージ・ワンソントという有名な犬）」や「怪物」、「恐竜」などを挙げることが多いという。つまり、彼らは、「生きていない」ことを「死」を結びつけたり、「実在すること」と「実在しないこと」、現実と想像、「生きている」と「絶滅した」などの対比を複合させたような理解を構成しており、いわゆる生物-無生物の対比が区別されていないのである。さらに、2、3歳だと「死」ということについても「死んだ人はどうやって食べたり、トイレにいるの？」などと聞くことから「死んだ人も生きている人と同じように生活していて、ただ「見えない」だけだとするような意味をもつのである。このように、幼児において「生きている-生きていない」ということは、大人がもつ「生物-無生物」とは意味論的に重なり合わず、両者の間には概念上の違いが存在するのである。言い換えると、彼らにおいては、「生きている-死んだ」「生きている-生命のない」という形式で分化しておらず、したがって子どもに対して無生物の例をいくら多く挙げて例示しても、それを大人のいう意味どおりに受け入れることが困難なのである。したがって、こうした素朴理論は「生きていないが「死んだ」と「生命がない」という意味に分化（differentiation）し、同時に生物カテゴリーに動物と植物を統合（coalescences）するというプロセスを経て生物学として再構成化されなければならないのである。

このような再構成化の具体的なプロセスは、まだ十分明らかにされたわけではないが、カミロフ・スミス（Karmiloff-smith, 1992）によれば、技能や知識の構造が不安定な段階では、自己内の知識間の関連性や知識全体としての位置づけについて意識的に明確化することができないが、次第に子どもは外界の情報に対して相互交渉すると同じように、自己の知識全体に対してそれを対象化するようなメカニズムを働かせることができるようになるという。このようなメカニズムを彼女は、「表象の書き換え（Representational Redescription）」というモデルで説明しようとす。ここでは特定領域の知識を「自分のもの（自在に使いこなせるレベル）」にすると同時にその自己の知識自体について内省的な見方をするようになり、やがてそれを柔軟に扱い、さらには修正したり、再構造化が可能となっていくというプロセスが仮定されている。これで注目されるのは、知識の変換過程に自己の知識への相対的な視点を導入することであろう。言い換え
るなら、これまでのようにもっぱら自己の非公式な知識の枠組みの中で処理するという形態を超えて、自らの知識をその枠組みを含めて「捉え直し」をするような意識的な機能が働き、それにより自己の理解を評価してみるという変換のための環境化的な活動を焦点化するのである。

最後にここで強調しておかなければならないことは、以上のような知識の構成、さらには再構造化がピアジェ理論が示すように、領域普遍的な構造の変化として生じるのではなく、領域固有な形式で達成されるということである。このような立場は、汎用性の高い知識構造の作り方が彼らの知識獲得を制約することによってきた従来の考え方の転換につながるものである。領域固有な変化という見方からすれば、先のような生物学における変化とこのような物理学における変化はそれぞれ異なることを含意することになる。しかし、さまざまな形で病気や生命倫理等の問題が顕在化している昨今の文化的状況に照らすならば、他の領域における物理学者に関する理論領域が刺激され、相対的には変化は進みやすいということも考えられるかもしれない。

II．授業における「素朴理論」の変換の可能性

1．知識の社会的構成

認知心理学では、かつての記憶研究でおこなわれていた無意味単語の機械的な記憶を調べることから有意義な単語、文の記憶研究へと移流し、1970年代に入ると個人のなかで表象される意味や知識を表現する試みがなされるようになった。同時に、適切な表象をコンピュータ内に表現し、いわゆる「知的なふるまい」をシミュレーションしようとする試みと結びつき、知識表現というひとつの研究の流れを形成したのである。その後、日常言語学派といわれるサーリー（Searle, 1980）の言語行為論をはじめ、キャラハラ（Charahef et al., 1985）人類学者などは、ごく日常的な会話や認知活動は、その時点での他者や道具を含む状況に強く依存していることを明らかにしながら、こうした表象主義の疑問を投げかけたのである。すでに触れたように、この流れは状況認知論として今日、人間の認知研究のひとつのパラダイムを築いているとい得る。共同体での実践活動や学校での学習をこの立場から論じたレイブラー（Lave & Wenger, 1991）やブラウンら（Brown et al. 1984）は、本来「知ること」と「行なうこと」は分かちがたく結びついた活動であるとして、知識は基本的に社会的・文化的世界に埋め込まれたものであることを強調する。

ここでは、以上のような動向を背景にしながら、知識の社会的構成主義という立場が明確に打ち出され、あらためて学習を捉え直すような試みがおこなわれるようになってきたことに注目しよう。知識の獲得過程を子どもと対象間という孤独な単位としてではなく、教室という社会的相互交渉という開かれた場に位置づけるという視点からのアプローチである。こうした流れのなかで、学習過程を実践的活動としてみるようなデューイが再評価され、同時にデューイにとって代わったはずのヴィゴツキーが、彼の文化-歴史的アプローチに注目される形で再登場している。かつて従来の理論として捉えられたデューイ、ヴィゴツキーの両者がいわゆる「社会文化的理論」の視点から注目されているといってよい。一方ではこうした図式において、対象と子
ども、すなわち客体と主体の相互作用を中心として認知発達を構想したビアジェ理論は「社会性の欠如」（筆者（1993）は必ずしもそう考えない）という評価のなかで影を失っていくことにも通じるのである。

知識の社会的構成主義が依頼しているのは、ヴィゴツキーが人間に固有な高次心理機能はまず社会的活動への参加という形態、すなわち心理間（inter-personal）機能として現われ、その後心理内（intra-personal）機能へ転化する、同時にこの過程は知的道具と記号（言語）を媒介として内化（internalization）されていくとした考え方である。ここには、いわば人間の心理機能というものか、あたかも個人内において存在するのではなく、その起源からとしても社会・歴史的産物として発生し、発展してきたものとする考え方として定式化する方向を認めることができよう。こうした観点から教室における学習を捉える基本的枠組みが、内化理論を具体的したものである発達の最近接領域の理論である。この考え方とは、かつての勝田（1964）の解説を引用するなら「おとの組織的な援助のもとで、科学的考察の基礎を、背のびしながら学習することである。この「背のび」の部分を大人（教師）と子ども間の社会的相互交渉で支援することのできる（ブルーナー（1996）によれば「足場かけ（scaffolding）」となるような）ような教授プランが練られねばならないとされる。教室の授業は、このようにして基本的には最近接領域を仲立ちとしてした教師と子ども間の社会的相互作用として位置づけられる。ここで具体的には、子どもは「背のび」をするならどんな参加できる領域（zone）において、主に言語を媒介としてやりとりし、やがて「背のび」する必要さえなくなるという内化のプロセスを経て知識を我がものとしていくとされる。

さて、こうして子どもの学習が社会的な営みとして位置づけられる兆しへみることができるものの、いくつかの問題がないとはいえない。ヴィゴツキーの理論は内化理論の考え方を支台とし、学校での科学的概念を体系的に獲得することを通じて、子どもが自身に自然を含む対象、さらには自らに対しても自覚的、かつ随意的に支配するような能力（心理内機能）を獲得するという飛躍的にともいえる発達の過程を念頭にしたが、その意味ではこの彼は高次心理機能をとらえていたと思われる。筆者は、カミノフスキーが表象を換えモデルにおいて基本的に変化すると想定するプロセス、すなわち心のなかに埋め込まれていた知識が心の他の部分にも向けられた知識へ、あるいは暗黙的な知識から明示的な知識へという定式化はヴィゴツキーの基調しようとした上記の考え方と一脈通ずるところがあると考える。したがって、今日でいう「メタ認知」的機能は、ヴィゴツキー理論でもその根幹にかかわる考え方として存在したと思われるのであるが、このあたりの検討はまだ十分になされていないといってよいであろう。ヴィゴツキーはまた「心理的道具」として言語による媒介を社会的相互交渉という「活動場面」にその起源を求めるのであるが、一方ここでは言語以外の「認知的道具」の位置づけは極めて薄いとみることもできる。彼の理論があいゆる活動理論なのかということは意見の分かれることであるが、この問題はそうしたヴィゴツキー理論の解釈の基本にもかかわっているのである。

Hatano (1993) によれば、授業における社会的相互交渉をとらえていくにあたって、ヴィガツキー理論を根本的に拡張しながら構成主義的な理論として再解釈すべきではないか、として、

1. 学習者活動的存在をみなし 2. 学習者は理解することを追求しており、時としてそれを達成しろう 3. 学習者の知識の構成は垂直的相互交渉と同時に水平的相互交渉を通して可能となる 4. 多様な情報を利用することは、知識の構成を促進する、という仮定に立つことを提案している。このような観点にもとづくような相互交渉を通じて個人が構成する知識は均一的な性質をもつものではなく独自のものとならざるをえないということは三宅（1986）によってもすでに示唆されている通りである。Hatano (1991) やKobayashi (1994) も水平的相互交渉における知識の獲得を取り上げ、その過程の対立や知識の共有のプロセスを分析している。ここでは、学習者同士で各々の既有意識をもとにした発言がまさに「背のび」しながら交渉し合う側面を認めることができる。あるいは、「効率的」ではないとされるような水平的相互交渉のもと意義をあらためて見出し、教室における相互交渉の関係を再構築することによって、学習についての根強い伝統観から脱出できるかもしれない。

2. 授業における「素朴理論」

すでに、学習者の理解過程を彼らの理論構築とその再構造化という観点から検討されるべきことを強調した。これまでの学習研究が用いてきた量的な次元でのアプローチから、質的研究にもとづくような学習過程の解明へと重点を移そうとするとき、ケアリーの研究（1985）にみられる
ような領域固有の理論の変化をまずは記述すべきという方法論に立って検討していくのが有効だと考えられる。だが、このように知識体系を一度解体するという方向は、ピアノ理論のような領域普遍なまとまりのある構造を仮定するということからみれば、ある意味ではきわめて複雑多岐にわたる人間の認識活動をあらためて整理し、記述したおずという作業が要請されるということでもある。同時に、忘れてはならないのは領域固有の理論としてみるとき、やはりひとりの学習者内で各理論領域がいかにかかわり、さらには総合されるのかという問題も問われなければならないはずである。

本稿の問題からみるなら、理解過程を学習者の有する理論を軸としてみていくことの意義は、先にも指摘したように、学習者研究をベースにしながら授業研究の枠組み自体を変えていくような契機を見出すということになるといってよい。その場合、基本的には知識の進捗的な畜積という「弱い意味」であれ、再構造化を射程として含むような「強い意味」であれ、学習者自身による意味を中心に据えた構成的活動を授業に位置づけていくような方向性をもたなければならない。そのことによって、表層レベルでの知識獲得を「授業の効果」としてしまう、あるいは「知っている人」から「知らない人」への伝達機能を中心とした授業の再考を促すような方向を探ることでもある。

このような観点から、学習者の素朴理論とその変換の様相を具体的な領域に即して検討してみることにしたい。ここでは「浮力」の問題を取り上げてみよう。物体の浮き沈みについて子どもが保持する知識の典型例は「重い食塩水だと、物体は浮きやすくなる」ということであろう。このような知識は、小学校3年生でも88%が保持しているという。ところで「重い砂糖水では、卵は浮くだろうか」という問いになると、勝浦（1988）によればその正解予測は極めて難しくなり、小学校3年生でも共にほぼ8割が「沈む」と判断するという。このような判断は、食塩水では卵が浮くという実験をおこない、その結果を確認した直後に判断を求めた場合においても大きく変化しないという。

筆者も大学生178名を対象に「食塩水で物体が浮く理由」と「砂糖水では浮くのか予想、その理由」について調べたところ、102名（57.3%）が「沈む」と判断し、その理由では「砂糖水には浮かせる成分がない」「浮かせる性質がない」などとする傾向が明らかになった。「砂糖水でも浮く」とした場合でも、その理由は「食塩水で浮いたから」「水の体積が増したから」などを含んでおり、「密度」「比重」を考慮した理由では3割に満たなかった。さらに注目されたことは、食塩水で浮く理由についても「浮かせる成分」が挙げられ、さらに「食塩水では軽くなる」として「浮く」という現象では重さの保存則さえ懸案しかねないような説明の傾向をうかがうことができるという点であった。このような傾向は図1のような課題を用いながら板倉（1985）によってしばしば指摘されてきたこともあろう。池田（1986）が小学校4年生（15名）を対象としておこなった授業でもこの課題が用いられている。池田によると、授業の討論過程では木片は「浮いているので軽くなるのであるから、木片の重さの一部のみが台秤にとりとく」とする常識派と「木片
水を入れた水そう（2000 g）と木（110 g）とがあります。Aのようにしてはかると重さは2110 gでした。さて、木を水そうに入れて、木を浮かすと重さはどうなりますか。

[予 想]
ア. 2110 gより軽くなる
イ. 2110 gより重くなる
ウ. 2110 gにちょうどなる

図 1 浮力の学習で用いられる課題

の重さの全部が水中を通し、台秤にとどく」とする〈重さの原理〉派が強く対立するという。

常識派では、「水が木を浮かせ上がらせるので、木は軽くなる」という説明が基本となっているが、このような理論は次のようないくつかの説明によっても支えられている理论の体系が形成されているということができる。すなわち、「木が全部沈むのであれば、台秤の木の重さがかかるが、ここでは木が浮いていて半分から上は空中にあるのでその分は軽くなる」したがって「木が全部が水を押しているのではなく、木の重さは全部台秤までいくのではない」と考えるのである。

一方、〈重さの原理〉派は「木が全部が水を押し続けるので、木の重さがかかる」とし、空中にある部分の重さは台秤にかからないという常識派に対し、「木は水からでている部分とつながっているので全体で水を押しているのだが」と説明し、その説明を受け入れないことを察しながら「では、空気中の木が水の押さないのなら、全体どこを押しているのだろうか」、さらに「軽くなるというのは、その分の重さはどこにいったのか」と問うような形式で授業が進行する。

〈重さの原理〉派の当事者2名のうち1名は、いわば重さの保存の原則に立っているのであるが、だからといって彼らの発言は必ずしも常識派に対する説得力をもたないのである。「空気中の木が水を押さないのなら、どこを押しているのか」「木全体が水を押し、水が台秤を押しているのではないか」という〈重さの原理〉派の発言に続いて、常識派の一人は「木全部の重さが台秤までいくのが、その木は沈んでいるのと同じだ」として相手の指摘をまけることなく自らの主張の枠組みに取り込むでしまいとうえあるのである。このように授業場面では、科学的にみて正論といえる発言が誤った理解を構成する他者に対して常に説得力をもつのではないかという傾向は、他の授業分析（たとえば佐伯ら、1989）でも指摘されており、授業研究における学習者の認識論的な課題とされてよいはずである。

さらに板倉によればこのような場合、「浮いている木片には重さがなくなる」としたり、「水面より下の木の重さの分だけ増える」とする判断を合わせると中学生で4割、高校生でも3.5割に達するという。彼らが有するこの領域の素朴理論は、場合によっては「物体の軽さ」を認めることもある。したがって経験的には浮いているようにみえる空気や水素には重さがないとする説
明を含むような理論として構成されていると考えることができる。

ところで「浮力」の概念は、ともにアルキメデスによって、この「軽さ」という見方を根本から排除しようとした説明原理として解釈することによってはじめてその意義が理解されるという性質をもつものである。しかし、授業ではしばしば「軽さの程度」を計算することで浮力の理解にとって代えられる傾向がある。板倉（1986）はこうした傾向を「アルキメデスの原理のアリストテレス的改作」と指摘した。その上で板倉は、多くの子どもが素朴理論として保持している「重さの概念」を力学の理論獲得のもとも基礎的なものとしての位置づけを与え、科学全体にわたるカリキュラムの構想を提案したのである。本稿の主旨からみると、この「重さの概念」に基づく素朴理論と科学理論を橋渡す媒介子としての位置づけを与えてみるとみやすくなる。重さについて知っている子どもにとって、空気、まして酸素にも重さがあるということは決して自明のことではないのである。

ところで村上（1979）が示唆するように、基本的に人間は歴史的に手を使って触れ、手を使って扱うという行為のなかで自己の日常生活を築いてきたのであるが、この可視性と可触性を通じて知覚される「移動」や「運動」といった現象を一定の時間と空間的秩序のなかでとらえるといった共通の構成的則（constructive rule）がわれわれの認識活動において機能していると考えられる。幼児が構成する「自ら動く対象は生きている」とするような理論はこうしたルールに基づいて構成されるものであろう。しかし、空気や酸素などは可視性、可触性といういずれの手段によっても知覚されえないような対象である。彼らの有する空気や酸素についての概念は、対象的行為、あるいは測定といった手段を通じて構成されたものだと考えにくく、むしろ教育や文化、より直接的には彼らが属する共同体が暗黙のうちに構成している非公式の知識体系の所産だと考えられるのである。したがってこのような傾向からうかがえるように、共同体で共有されるような「先行的了解」とは、上記のような経験的な構成的則に従うばかりではなく、いわば「物語としての知識的プロセス」といってよいものを通して構成されていることも注意を払わねばならないし、より基本的にはこの両者がいかにかかわって認識を構成するかという問題が踏まえられなければならないといえるのである。

そこで、このような過程を経て構成される知識の改定とは、彼らの理論構成の基盤を成す構成の則の変換にまで及ばねばならないはずである。科学の学習過程に「つぶつぶ仮説」として原子論的な視点を導入しようとする板倉の試み（1990）は、そのような変換を可能とするような目的で構想されたものといえよう。ここでは、人間にとって非可視的な物質量が相互にどう関係しているかという問題が生じたとき、原子論による保存性の視点に立つことによりはじめて説明可能となったという科学史の成果がふまえられている。やはり子どもの学習過程においても、同様な視点の獲得が必要であり、それと相互作用をするようなプロセスにおいてこそ、空気や酸素に対しても物質としての存在論的地位が与えられると考えることができる。

浮力の概念がより洗練された理論として再構造化されるには、上記の「軽さ」の概念の除去に
加えて、さらに「重さ」の概念が「重力」と「質量」へと分化（differentiation）を遂げることが必要である。そのことによって「水中で物が軽くなる」というとき、この「軽くなる」ということが、まさに水を上のことであって、重さそのものには変化がみられないことの理解へと通ずるはずである。そこでそれによって「水中」では「上にもらあげる力」がはたらき、この力を浮力とみなすことができるようになる。その結果、物体が浮くという現象に対し、「軽くなったから」という説明から「密度、あるいは比重が小さいから」という説明への突変が可能となると考えられるのである。

3. 理論と変換とデータの対応について

授業場面での知識獲得を、学習者の側に焦点を当てながら具体的にみてきたのであるが、ここでは最後に彼らの素朴理論をいかにみるべきかという問題を整理しながら、その変換の問題点を明らかにしてみよう。小林（1986, 1989, 1995, 1996）は、授業場面を通じて、生徒は現象的教師の意図に応えるようにみえながら、授業に参加する以前に構成された理解構造が教師の意図したように変化することが少ないということについて若干の分析をおこなってきている。たとえば小学校6年生の理科では「植物のつくりと養分」などの単元で「日光がよく当たり、肥料があるところでは、インゲン豆やヘチマはよく育つ」として「日光を当てた葉と日光を当てなかった葉のどんぶりのでき方をヨウ素液に入れて調べる」という実験が必ず登場する。そこでデンプンを確認したあと、そのデンプンのたくわえ方やゆくえなどを学ぶのが一般的である。このような実験を経験しながらでも、では植物は栄養をどのようにして得るのかも問われると、「水」や「肥料」などを挙げることが多いのである。村山（1989）が述べるように、植物が光合成によって水と二酸化炭素を原料にして、光の働きによってデンプンと酸素をつくりだしているという、いわば「原料を加工して製品を作る」という意味での理解に及ぶことはきわめて少ないことを示しているのである。

人間の有する知識や活用については、認知心理学ではスキーマの理論や情報処理的アプローチで中心的な扱われてきたことはすでに触れた。その場合、問題を考えるということは、法則や公式を埋め込んだ知識構造、つまりスキーマを検索し、そのスキーマの変数と問題とされる値を対応づけることが基本的な条件とされる。しかし、上記の例のような「光合成とは原料を加工して製品（栄養）を作る」とこととするような学習者の意味づけを中心にとした構成的な側面を扱うにはこれで十分ではないであろう。その意味で学習者の理解の基盤を成している意味をもつような、さらに自己との関わりにまで及ぼすような学習論としては見るべき研究が乏しいのが現状なのである。

このような観点から、たとえば「なぜか」すなわちアナロジーの適用ということを理解過程に位置づけながら考えてみることもできるよう。レイコフとジョンソン（Lakoff & Jhnosn 1980）は、「われわれが普段、ものを考えたり行動したりする際に基づいている概念体系の本質は根本
教育における人間発達と学習研究の展望と課題（小林）

的にメタファーによって成り立っている」として、人間の思考過程においてメタファーが中心的な機能を果たすことを強調している。彼らは人間の理解の活動について、根本的にそれが概念の定義的な意味ではなく、「各人にとっての意味」だという。同様の立場から、尼ヶ崎（1990）は「理解とは対象化された知識が記憶領域に記入されることではなく、私たちの身体内部に何か起こることだ」とするような見方を導入しようとする。

アナログによる理解の典型として、たとえば電気の流れを水を流れに比喩えることによって、「電気」「電圧」「電力」などについて「わかる」ようになることが知られている。クレメント（Clement, J. 1987）は、学習者のもつ素朴概念に対し、それと非連続的な科学的観念を直接に提示するのではなく、学習者の現実世界の経験を媒介として両者を結びつけるような「橋渡し方略（bridging strategy）」を提案する。たとえば抗力に関する図2のような問題では、「本が機から受ける力」といわれても直観的にはわかりにくく、そこで「上向きの力」が作用していることを理解できないことが多いのである。そこでクレメントは図3のように、それをバネの状況になぞらえて、このバネを押し縮めた場合、絶えずそのバネを押している指に力が作用することを確認させると、その上で重い本を薄い板の上に乗せた状況へと橋渡しをおこない、図2の課題を与えるのである。このことによって、外見が固い物体でも、ある程度はバネのような性質をもつのだということが理解できるようになるという。

図2 抗力の学習で用いられる課題

図3 概念変容のための「橋渡し方略」
Clement, J. (1987)
ところで一方、学習者の理解を考える場合、以上のような個別の知識の領域内で完結するとみるような考え方からも飛躍しなければならないと思われる。確かにこうした授業において、学習者の既知知識と新しい知識の橋渡しを考え、それによってそれぞれの小領域に限るなら一定の理解が促進されるといえよう。しかし、「上記のようなことが自体はわかるような気がするものの、考えてみると全く当たり前のこと、おそらくは何故大げさにいわなければならないのか」といった性質の問題が学習者にしばしばおこるのである。もちろん、学習のこのような側面は授業面で現われることは少なく、筆者ら（1989, 1995）が試みた限りでは、学習直後のインタビューなどによってしばしば明らかになるものである。ここでは、学習者自身における意味づけは依然十分なものではないことを示しているのである。おそらく、このような場合、個別の現象とその説明が力学的有の理論的枠組みに位置づけることの意味と同時に、自己の理解においていかなる意味をもつものとして構成されるかが問題とされねばならない。たとえばそれは、ある種の「ストーリー性」をもつような因果的説明として構成されるものであるかもしれない。ブルーナー（1996）も最近、新たな理解の捉え方としてコンテクストやそこでの意味を学習者の個体的な「物語的認識（narrative cognition）」としてみることを提案している。理解とは、したがって授業場面では命題で表現される知識であっても、それは学習者において具体的、個別の事象とかかわっており、その領域の理論全体、さらには自己との関わりにまで及ぶ性質をもつものとしてみていく必要があるといえよう。

最後にここでは、具体的に彼らの有する理論がいかにして変換可能なのかを整理しておくことにしよう。ストライクとポスナー（Strike & Posner 1985）は、概念的変換をそれまでの概念を土台としてその形態が変わるに留まるのではなく、古い概念が新しい概念に置き換えられることだとする見方に立ちながら、その変換を促進するには次のような条件が必要であるとしている。

・生徒が自分の所有する概念へ不満をもつ。
・生徒にとって新しい概念が、ある程度利用可能なものとなっている。
・新しい考え方をもっともらい、もとにすることができる。
・新しい考え方を制限、予測において優れているとみなすことができる。

これらの条件は、個別の領域を越えた一般的なプロセスとして提案されているのであり、したがってそのような変換はすでに述べたように、さらに領域固有な性質が考慮されるべきである。カミロフスキーが示唆するように、領域により変換を遂げる領域もあるが、それなりにくい領域のあることも考慮されねばならない。いずれにしろ、このような定式化は、新しい理論がもつ意味をも喚起付けながら、現有の理論の意味的な評価をおこなうというメタ理論的知識が関与しなければならないというものを示唆しているのである。

ところで、理論変換の過程にかかわって、学習者が有する理論と明らかに矛盾するような外的
データが示されるような場合、ただちに彼らは自分のもつ理論に不満を示すのであろうか。クーンら（Kuhn, Arnsel & O’ Loughlin 1988, Kuhn, 1989）やチンら（Chinn, & Brewer. 1993）によると、学習者はそのような場合、そのデータを無視したり、自分のもつ理論に都合のよい方向で解釈し、データに合わせて理論を修正しようとしないという傾向のあることを指摘してい
このようなデータと理論を調整するのはしばしば大人であっても十分ではなく、やはりデータを解釈する場合、自己の有する理論にうまく適合させてしまうのである。理論と外的データの関連を明示的に取り上げて検討するのは方法論的にもそう容易ではないのであるが、カミロフースミスはこの問題を検討するにあたって具体的でかつ示唆的な指摘をおこなっている。彼女は図4のように、いくつかの異なる平均台でバランスをとることのできるありふれた「バランス課題」を用いる。このような課題に対し、4、5歳児は試行錯誤を何度も繰り返しながら、やがてバランスをとることができるようになるという。一方、6、7歳児になると、ある程度の試みをおこなうが積み木のバランスをとることのできる「幾何学的中心」を思い浮かべ、タイプB、C（偏りのある場合）において失敗する傾向をもたらし、4、5歳児に比べても課題に成功する場合が低下するという。こうした現象は4、5歳児では、いわば外的データにとくで方法で解決しようとしているのに対し、6、7歳児になると彼らの「幾何学的中心を支えバランスがとれる」といった理論にこだわって解決するためだと解釈される。この実験は、知識構成の発達過程では外的データに依存するような相（phases）と理论に導かれるような相というものを分けて検討すべきことを示唆しているといえる。さらにこのような傾向をカミロフースミスは、図5のような一般的のモデルとして示している。図でいう「表象」とは、ここで理論レベルとみて差し支えない。図から、行為のレベルでは一時的にはその低下を招くということがあるものの、理論レベルは外的データとは切り離して発達しうることを示唆しているのである。さらには、表層的には一定の行為や反応が年令の違いを越えて現われる。つまり、子どもと大人が同じような行為を遂行するようにみえたとしても、それぞれの内部にある理論レベルでは構造的な違いがあるということが想定されるのである。

さらに、中垣（1984）はわかりやすい水位問題を例にとりながら、次のような興味深い指摘をしている。水位課題とは、水中に物体を沈めたとき、水位が上昇するという現象がかなにによってもたらされるかについて説明を求める課題である。その場合、子どもは物体の体積（「大きさ」）による（これを「水位体積説」すると）。と、しばしば物体の重さによって説明しようとする（「水位重量説」）。そこで水位重量説をとる子どもに対し、同型同大で重さの異なる2物体を沈め、彼らの理論を裏切るような課題、すなわち異種同大課題を提示した場合にはどのような予測をおこない、どのような事実を確認するかを検討している。結果は、水位重量説に立つ子どもは、当然ながら重い方が水位が高くなると予測するものの、実験的反証に直面しながら水位体積説へ理論変換を遂げたケースがきわめて少なかったという。すなわち、反証例に直面しながら理論は放棄されにくいのである。言い換えるなら、彼らの理論的予測は裏切られているものの、結果として現れた事実そのものの読み取り自体が正確だということになる。ある小学校1年生は予測とは反対に軽い方の水位が高くなったのを見て、「こっちの方が（軽い方が）少し多い。ぼくは（こういう結果にはならない）と思ったけど、こうなっちゃった。どうしてかしらないいけれど……」といった。中垣はこのような現象を分析しながら、理論を「事実を読み取
る」ための理論と「因果的説明としての」理論を別し、このうち後者の理論こそ変換されにくいのではないかという。

先に挙げたように、砂糖水では卵は浮かないとする場合、彼らにそれについての実験を行なって確認させたとしても、その事実自体は認める一方で依然として素朴理論そのものは保持されるということでも十分考えられるはずである。授業においても個別の現象や知識を見かけ上理解したようにみなながら、必ずしも基本的な見方自体、すなわち理論の変換にまで及ばないといったケースはしばしばあるのである。このような現象を踏まえた上で、なおストライクからの提案をいかにして生かせるのだろうか。あるいは、あらためて授業を通じて生徒の知識構造のいかなる側面が変化可能なのか、あるいは変化しにくいのかという問題が問われているといってよいであろう。

おわりに

本稿では授業という場面を中心に拝えながら、学習者の知識獲得にかかわる問題を考えてきた。しかし最近の教育の動向もみると、こうして授業における知識獲得の問題を正面に捉えることから、いわゆる「関心・意欲・態度」の問題へとずらした観点を持ち込むという傾向が強まっている。理由として、従来の教育が知的側面に重点を置きすぎたというところもある。このような態度評価について、さまざまな議論を喚んでいるが、本稿の立場からすると、教室での学びではすでに確証済みの固定的な知識の再生産に満足せざるをえなく、せいぜい学び手に任されるのはいかな効率的にそれを遂げるかくらいのところとする学習者にして子どものみならず、教師までもが陥ってしまいかねない学校教育の状況と深くかかわっていると考える。したがって、上記の「ずらし」の方向はこうした状況を正面に捉え、子どもの学びの再構築へむかう可能性を避けてしまうという意味で疑問である。

言い換えるなら、教育、とりわけ授業とは人間の築き上げてきた文化、科学の成果や可能性を知識として構成、共有する場として再構築されるべきである。本稿でも触れたが、科学的知識の構成過程こそ、子どもの自覚的かつ随意的な高次精神活動の発達を想定したのがヴィゴツキーであったと思われる。今日の発達と学習研究におけるヴィゴツキー再評価の流れにおいて、必ずしもこのような現象が正当に位置づけられているとはいええない。ブルナーの「発達の最近接領域」の「足場かけ (scaffolding)」といった翻案にも同様な意味での不満が残るのである。

本稿では、ピアジェ理論の骨子であったように、知識の獲得を学び手自身が構成するプロセスとして仮定してきた。一方では、ケアリーやカミロフスミスと同様、知識の領域固有な構成という視点に立つべきことも影響を受けてきた。特にカミロフスミスの知識の書き換えモデルの軸となっている「人間らしい柔軟性と創造性を獲得する」という想定が、ヴィゴツキーの自覚性と随意性という視点に一脈通じるものがあるように思っている（もちろん、理論的には異なるのであるが）。同時に彼女のこのモデル自体は、学習過程において単に「できる」という手続き的
知識を超えて自己の理論を構成していくとする波多野（1977）の適応的熟達者モデルという考え方とも共通すると思われる。

人間の知識は行動主義で仮定されるように要素的な単位で「入れ替え」できるようなものではない。今日では自明のことでありながら、通常おこなわれる授業では教師、生徒もこのような知識観を共有している場合が多い。カリキュラムミスは、いかなる知識であるか、一旦獲得した知識を自在に「使いもの」になるまでのプロセスを前提とすべきだという。その後、その知識自体や性質が言語的に示されるような段階に至る。と同時に、同一の知識領域内において他の知識単位との連関や差異、意味づけがおこなえるようなものである。すなわち、「心の他の部分にも向けられた知識」である。この段階でいわゆる自覚性、随意性を伴うような知識間の評価や価値づけがみられることがある。たとえば、同じ物理現象を「素朴理論」で捉えるような知識、さらには「物理学理論」による知識間でなんらかの意味を媒介とした関連づけが可能となるのである。一方、この場合の意味にかかわって、板倉の主張するような社会的な条件や共同体で仮定されるような知識観が大きく関与すると考えられる。学び手の有する理論に対する反証データは表層的には受け入れ可能であっても、理論自体の変換は容易におこらないという現象もこうしたプロセスに位置づけ、より長期的な発達に位置づけて見なおされるべきなのである。

文献
(1) 尾崎晴 彦 1990 ことばと身体 動草書房
(7) Clement, J. 1987 The use of analogies and anchoring intuition to remediate misconceptions in mechanics. Paper presented at the meeting of the AERA.
(9) 波多野润夫 1990 認知科学の研究対象としての科学的知識：日常的認知の視点から 認知科学の発展 vol.2 日本認知科学会編
(12) 沖田具実 1986 教室なかのアリストテレス達 季節社
教育における人間発達と学習研究の展望と課題（小林）

板倉聖宜 1988 科学と教育のために 季節社
板倉聖宜・江沢洋 1985 物理学入門 国土社
板倉聖宜 1986 科学と方法 季節社
板倉聖宜 1990 科学と教育 キリン社
勝浦範子 1988 砂糖水の中でも卵は浮くか 浮力と密度 仮設実験授業研究会 板倉聖宜編 国土社
小林好和 1986 授業場面における理解過程に関する研究（1） 札幌学院大学人文学部紀要第40号 —物語教材の理解構造とその表現—
小林好和 1989 授業場面における理解過程に関する研究（2） 札幌学院大学人文学部紀要第46号 —理解構造を媒介とした社会的相互作用の分析—
小林好和 1995 授業場面における理解過程に関する研究（3） 札幌学院大学人文学部紀要第58号 —社会的相互作用における理解構造変換の可能性—
Kobayashi, Y. 1994 Conceptional acquisition and change through social interaction. Human Development, 37, 233–241
小林好和 1996 知識の獲得過程とその評価方法の検討 「認知心理学者 教育評価を語る」 北大路書房
レイコフ, G & ジョンソン, M（渡辺・楠部・下谷訳）1986 レトリックと人生 大修館書店
村上洋一郎 1979 科学と日常生活の文脈 聞堀社
中垣啓 1988 「事実の理論的論拠性」は「理論の反証不可能性」を含意するか 国立教育研究所研究集録第17号
野家啓一 1993 科学の解釈学 新潮社

（こばやし よしかず 本学人文学部教授 教育心理学専攻）