Vol5 No.2 Block Stacking by GA

37

Solving Nonlinear Block Stacking Problem by

Operator Oriented Genetic Algorithm

MINAGAWA Masaaki

Abstract

To solve the nonlinear block stacking problem, this paper describes
an approach based on an Operator Oriented Genetic Algorithm. The
block states are represented in cellular coordinate space. Operators
to generate block motions are given as production rules called
basic-rules. A meta-rule is formed as a chain (an application
sequence) of the basic-rules. Each meta-rule is an artificial chromo-
some for GA based search and its capability of goal attainment is
tested. A collection of meta-rules forms the population of GA.
Fitness value is given to each meta-rule and is calculated based on its
rule length: the shorter the meta-rule length to attain the given goal,
the higher the fitness value. That is, the problem is solved as an
optimization (minimization of plan) problem. Based on the proposed
methodology, experiments are carried out and some experimental

results are shown.

1. INTRODUCTION

This paper reports a Genetic Algorithm®
based approach to the well-known block
stacking problem which is familiar in tradi-
tional Al field®®. Informally, the problem
can be stated as follows.

Given an initial state and a goal state,
find a motion sequence of the blocks to

attain the goal.

In traditional approaches, means-ends anal-
ysis, hierarchical planning, least-
commitment strategies etc. were proposed
but resulted in limited success®®. Due to
Minacawa Masaaki ALBEEBE R S IHHR A

the nonlinear nature (i.e conflict among
block motions towards goal attain-
ment?*t®) of the planning problem, any

single strategy is hard to be effective.

The search space (the states of the given
blocks, pre/post-conditions, operators) was
represented in propositional form (e.g.
ON(X, Y), ONTABLE(X)). In solving the
problem, the initially given problem is
divided into several sub-problems and,
according to this, subgoals are generated.
The search is carried out until each subgoal
is completely attained.

Although the relevant block states are

quite limited during a particular block

38 it &

motion, the search method requires keep-

ing and searching costly huge state space.

Success of the search largely depends on
description of the targeted problem as well
as domain-dependent heuristics. Descrip-
tions of block states, operators, conditions
are not easy job. To obtain successful
results, these have to be carefully described
and heuristically tuned. Furthermore, the
problem of describing relations between
the result of operations and caused changes
in the state space (i.e. the frame problem) is

still unsolved.

To give analyses to such problems, recent
papers show the result of computational
complexity study on the block stacking
problem(l)y(Z),(S),('?)

By describing the block stacking problem
another way and viewing the problem as an
optimization problem rather than theorem
proving, we make a new approach using
Genetic Algorithms (hereafter GAs). In
the proposed approach, the states of blocks
are represented using a cellular coordinate
space, while traditionally the space was
represented in propositional form (see Fig.
1). The use of cellular coordinate space
eliminates necessities for delete/add-lists

and can decrease the size of state space.

To date, some attempts were made to solve
the problem using GA based approaches.
Koza’s approach (Genetic Programming
paradigm®®) is closely related to tradi-
tional AI methodology. S-expression of
LISP code is represented as an artificial

chromosome and LISP programs for mov-

Mar. 1996

Vertical

Y

Horizontal
(a) The cellular space description
ON(H,G)

ON(E,D) ONTABLE (F)

(b) The propositional description

Figure 1 The state descriptions of the

blocks world

ing blocks are searched. Koza hasn’t
shown general example in the literature®?,
Hirano used another chromosome repre-
sentation based on state transition graph®.
A state of blocks is represented as a node
and feasible transition is represented as a
directed edge of graph. Each numbered
edge is coded as gene of the artificial chro-
mosome. A minimum sequence of transi-

tions is searched as a solution. In
Hirano’s approach, generation of the graph

may become crucial problem.

One major obstacle in finding plans for the
block stacking problem is that many-to-
many mapping among block state transi-
tion exists’®. Before moving a block, the
decision have to be made on “move which
block to which position”. To consider this
aspect of the problem, in the proposed
approach, a primitive block motion is given
by a production rule which is triggered
according to the given current block

state(2 To produce a series of motion,

Vol.5 No.2

a chain of the production rule is formed.
When fired, each block moves according to
The set of

the sequences forms the population of GA.

the given sequence of the rule.

This is similar to the Classifier System
(CS®) which is a machine learning system
based on string-formed production rules
(classifiers), the bucket-brigade algorithm,
and Genetic Algorithms. Evaluation
criteria, however, is different. Evaluation
is given to a series of rules while the CS
gives evaluation to each rule. In other
words, we attempt to find solutions without
using the bucket-brigade mechanism which
assign higher credit to frequently fired

rules.

Fitness (environmental reward) values are
associated with meta-rule (MR) length.
The length is given as the number of effec-
tive basic-rules (BRs) to attain the goal
The shorter the MR length, the
higher the fitness.

state.
This can be rephrased
as: solve the problem as minimization of
MR length attempting to obtain the plan
having smallest number of block motions.
We use variable-length string®® to permit
redundant representation of solutions. To
solve similar stack example, successful
sub-strings are inserted to solve the larger

size problems effectively.

In this problem setting, information given
at each locus is sequentially interpreted
and a plan (phenotype) is obtained. Each
gene represents an operator while, in most
GA applications for function optimization
problem, it represents pure numerical val-
ue. This is called “operator oriented GA”

Block Stacking by GA 39

and was firstly applied to the sliding block
In Suh’s
example, operators were motions of blank
position of the puzzle (e.g. UP, DOWN,
RIGHT, LEFT moves).

puzzle problem by Suh®®07n,

2. THE PROBLEM DESCRIPTION
We describe the problem P using the fol-
lowing 7-tuples.
P=@Q>3,6E q,,q:S)
where
Q: the finite set of states
2 Finite set of input symbols
d: State transition function
E: evaluation in the environment
qo: Initial state (g,€ Q)
gq: goal state (g = Q)
S: the set of input symbol string
A state ¢ (£Q) is describes as
g=A{(b,hv)}
b: a block (b= B, B: the set of blocks)
h: horizontal grid position (2&1)
v: vertical grid position (v&1)
I: the set of integers (I > 0)
The state transition function & maps a

state ¢; to another state q; (¢;,¢;< Q).

8 (gi,s) =4qj
where
S={s}
S=0,00 oyt on ((€10:E3)

The input symbols are sequentially inter-
preted from left to right side. By inter-
preting these input symbols, the state tran-

sition occurs step by step (block by block).

The problems is, therefore, to find the set
of input symbol strings which terminates
the state transition by reaching the given
goal:

Find S={s|8 (q,,5)=qc}

40 1t

>

Mar. 1996

input symbol string (artificial chromosome)

101102]03]

l -Idnl

| o] |

scan direction

—

decode /
state transition

Y
a g‘/vo“o OQ.-
xﬁéﬁi’%
T

e

C4—p-O

Figure 2 The finite state automaton using the operator oriented

genetic algorithm

Based on the descriptions above, we
attempt to construct a finite state automa-
ton based on the operator oriented GA (Fig.
2).

3. STATE SPACE DESCRIPTION
The state space described in propositional
form is translated as follows;
ONTABLE (X) :
3 (h,v) such that
assign (hv) =X, and v=1
ON (XY) :
Jor wi= (X, hi,v:)Eq, w;=(Y,h;,v;) Eq,
hi=hj, and vi=v;+1
CLEAR (X):
S h,v) such that
assign (hv)=X, and
assign (hbv+1)=d¢
The function assign returns a block name

(hvsl)

or null set (¢) according to existence of a
block at designated cellular space coordi-
nate (3,7).

In the cellular space, to guarantee physical

consistency, we request the following con-
ditions hold.

C1) no-collision condition: the same posi-
tion cannot be occupied by multiple
blocks (physically infeasible)

Jor N (ui,u;) €q (ui¥F u;)
hi+ h; and vi+v;

C2) stability condition: each block has to
be placed on either table or another sta-
ble block.
for Yu=(X,hv)cq

assign (hyv— 1)+ ¢ (v>1)

C3) goal attainment condition: the given
goal to a particular block is attained only
“when the blocks which are placed under
it has already attained their goals.

Jor Yw O<w<w)

Y=Z7
where
Y =assign (hw) (Y. hw)eq)
Z = assign (h,w) (Z hw)=qs)

Vol.5 No.2

Initial state

Block Stacking by GA

MOVE-4 E
H

l@?mm

MOVE-5

= R

MOVE- 6

D| |E E——l | B
1 2 3 4 5
MOVE-7

Il‘

(o] [e] [c] [
1 2 3 4 5
MOVE- 8

MOVE-11

41

1 2 3 4 5

MOVE-15 Goal state

Figure 3 The generated plan for 8-blocks case

4. THE APPROACH METHOD 2={rlj=12
First, to find the set of input symbol strings v;=(cj,aj)

S, according to the problem description Ci=CyCom "
given above, finite set of input symbols are aj=a,a,

given as the set of production rules;

......

where ¢; is condition part and a; is the

42 ¥ an =
40

o 8 blocks

3

[+

g —S— Best

~ 307g e optimal

o ﬁ\x

i ™

@ 20

2 |

G

15:A~A-v,,‘m‘—====
100 10 20 30 40

Generation
Figure 4 The search result (8 blocks)

Initial state

D H L P T X
[G K [¢) 8 w
B F J N R v Z
A E I M Q U
1 2 3 4 5 6 7 8
} z
R Y
Goal state K o x
E J P w
D I o v
o] H N)
B G M T
A F L 8

1 2 3 4 5 6
Figure 5 The test example (26 blocks)

~

8

action part of the rule. To form a string
for GA based search, we define the set of
input symbols;
S={R;|i=12-- , Npsize}
Ri=mr,; mv, m¥rien
(mr;E3)
The condition part of the BR is given as
follows
for b;=B
c;=GP;
c.—= WA;
cs=1: if CGi=1
0: otherwise
if CGi=0
0: otherwise

c,=1:

1% # Mar. 1996
8
26 blocks
6 [l-prequency b
2 "
g —
a < < T <
o 4
& -~
N N NN
2
L [

48 49 50 51 52 53 54 55 56 57 58 59 60
Meta-rule length
Figure 6 The search performance (meta-rule

length) distribution for the 26 blocks
test example

where
GP; =1: if block i is at a goal position
0: otherwise
WA;=1: if block i is at work avea
0: otherwise
CG; =1: if the goal of block i is clearved

0: otherwise
Finally, we give the action part of BR as
a,=1: move to the goal
a.=1: move to work area
This is quite similar to Holland’s classifier
system®, but the use of don’t care symbols
(#) is not considered (i.e. no refinement of

rules during the search process).

As mentioned above, the customized GA in
this paper is an operator oriented GA. An
operator is a gene and, in this problem

setting, given as a production rule.

Each string is decoded from left to right
position and rules are fired according to
current state of the block stack. Given a
large number M, the length of MR is given
by;

Vol5 No.2

RLEN =m: if m<M, and qn=qc
=oo:if m>M
where

8 (QorWim) = Qo (W =TT, MT 5"+ MV)

A block to be moved’ at each step is
selected according to the following proce-
dure. The stack of blocks are scanned
from left side or right side according to
probability calculated by the function flip-

Junction. When the j-th BR matches the

current state (examined by the function

cond _match, the block is moved to the
designated position by the function move
block. The function judge complete exam-
ines if ¢g=qc.

v=Fualse;
J=1
while
J<RLEN or v=Fualse
sw = flipfunction;
if sw=0 then SS=1: ES=NSTACK
else SS=NSTACK: ES=1;
for k=SS to ES do
u=cond_match;
if u=True then move block;
v =judge_complete;
if v="True then RSLEN =j;
=it

NSTACK: the number of horizontal grid

positions

Since the population is randomly generated
and tested, each MR can have redundant
information (i.e. BRs which cannot be
fired), we allow genes which are not

activated.

Block Stacking by GA 43

(PLEN; < RLEN;)
pi=op: if my; fired
¢: otherwise
After the examination of rule-firing, in-
active genes are removed from the corre-
sponding string. Thus we have the vari-

able strings.

Fitness V; (reward from the problem envi-
ronment) is given as follows and strings
with above-average performance are re-
produced (NV;: the expected number of re-
production).

N;=PSIZE X P;

PSIZE

Pi=V/ 2V
j=1

Vi=(RLEN,,ox— RLEN;)

5. EXPERIMENTS

In the experiments, we used standard type
genetic operations such as crossover, muta-
tion, inversion and deletion. The number
of stacked blocks in vertical direction was

not limited.

The set of operator symbols = and two
block stacking examples were given as
follows;
S={r,775%}
7,=(1000,10)
7.=(1001,01)
7= (0110,10)
7= (0101,01)

Example-1 (8 blocks):
% =1(A,1,1), (B,1,2), (C,1,3), (D,1,4),
(E,3,1), (F,3,2), (G,3,3), (H,3,4)}
a:=1E,11), (F,1,2), (G,1,3), (H,1,4),
(A,3,1), (B,3,2), (C,3,3), (D,3,4)}

44 At

H

Example-2 (26 blocks):
7,=1(A,1,1), (B,1,2), (C,1,3), (D,1,4),
(E,2,1), (F,2,2), (G,2,3), (H,2,4),
(L,3,1), (J,3,2), (K,3,3), (L,3,4),
(M,4,1), (N,4,2), (0,4,3), (P,4,4),
Q,5,1), (R,5,2), (5,5,3), (T,5,4),
(U,6,1), (V,6,2), (W,6,3), (X,6,4),
(Y,7,1), (Z,7,2)}
g:=1(A4,1), (B,4,2), (C/4,3), (D,4,4),
(E,4,5), (F,5,1), (G,5,2), (H,5,3),
[,5,4), (J,5,5), (K,5,6), (L,6,1),
M,6,2), (N,6,3), (O,6,4), (P,6,5),
Q,6,6), (R,6,7), (5,7,1), (T,7,2),
U,7,3), (V,7,4), (W,7,5), (X,7,6),
(Y,7,7), (Z,7,8)}

(
(
(
(

Fig.3 shows the generated plan for
Example-1. The given goal was attained
after 15 steps of block motion. Before
testing this example, four small sized
examples were tested (4, 6 blocks) and the
obtained input strings were inserted before
the run. During the search, GA parame-

ters were changed as follows.

Crossover rate: 609 to 109

0.089% to 0.2%
Inversion rate : 0.089§ to 0.4%
: 0.089% to 0.4%

Mutation rate :
Deletion rate

The parameters were switched when no
improvement was observed for three gener-
ations. The result shows that the mini-

mum length plan was obtained.

Fig.4 shows the search behavior shown
during the above search. The horizontal
axis represents generation and the vertical
axis represent meta rule length. The sub-

strings are inserted at random position in

Mar. 1996

newly generated strings.

Fig.5 shows the Example-2 (26 blocks in-
cluded).

is a nonlinear planning problem. Fig.6

As well as the first example, this

shows the distribution of rule length

~obtained through the second experiment.

The horizontal axis represents the MR
length and the vertical axis represents the
observed frequency of the MR length.
Three smaller size examples (12, 18 blocks)

- were solves before the run to obtain effec-

tive sub-string.

6. CONCLUSIONS

(1) To solve the nonlinear block stacking
problem as an optimization problem, I
proposed an approach method based on
the Operator Oriented Genetic Algorith-
m. Each gene was coded as an operator
rather than pure numerical values.

(2) The block states were represented in
cellular coordinate space rather than in
propositional form. This had an effect
of decreasing the size of search space.

(3) Operators to generate block motions
were given as string-formed production
rules called basic-rules. A meta-rule

was formed as a sequence of the basic-

rules. Each meta-rule was coded as an
artificial chromosome for GA based
search and its capability of goal attain-
ment was tested.

(4) To search plans with minimum motion
steps, fitness value was given to each
meta-rule and calculated based on its
rule length. The

according to position of artificial chro-

length was given

mosome at which goal state was found.

(5) Based on the proposed methodology,

Vol5 No.2

starting from smaller size problems and

accumulating successful substrings, I
showed experimental results (for 8, 26
blocks) and the applicability of the meth-
odology.

(6) My future work includes development
of hybrid methodology for solving the
many-to-many mapping problem by ad-

ding some machine learning mechanisms.

REFERENCES

(1) Bylander, T.: Complexity Results for Plan-
ning, Proceedings of the 12th IJCAI, pp.274-
279, Morgan Kaufmann (1991).

(2) Chenoweth, S.V.: On the NP Hardness of
Blocks World, Proceedings of AAAI-91, Vol.
2, pp.623-628, AAAI Press (1991)

(3) Davidor, Y.. Genetic Algorithms and
Robotics: A Heuristic Strategy for Optimiza-
tion. p.164, World Scientific (1991).

(4) Goldberg, D.E.. Genetic Algorithms in
Search, Optimization & Machine Learning.
p.412, Addison-Wesley (1989).

(5) Erol, K. et al: On the Complexity of
Domain-Independent Planning. Proceed-
ings of AAAI-92, pp.381-386, AAAI Press/
MIT Press (1992)..

(6) Goldberg, D.E. et al.: Don’t Worry, Be
Messy, Proceedings of ICGA-4, pp.24-30,
Morgan Kaufmann (1991)

(7) Gupta, N. and Nau, D.S.: Complexity
Results on Blocks-World Planning, Proceed-
ings of AAAI-91, Vol.2, pp.629-633, AAAI
Press (1991).

(8) Hirano, H.: Solving the Block Stacking
Problem by Genetic Algorithms, Interface,
No.2, pp.108-123 (1992)

(9) Holland, J.H. et al.: Induction: Process of
Inference, Learning, and Discovery. p.398
(pp.1-150), MIT Press (1986).

(10) Koza, J.R.: Genetic Programming, p.819

Block Stacking by GA 45

(pp.459-469), MIT Press (1992).

(11) Minagawa, M and Kakazu Y.: A Genetic
Approach to the Robot Planning Problem: A
Study on the Block Stacking Problem, Pro-
ceedings of Robotics & Mechatronics Con-
ference, pp.135-138, JSME (1991).

(12) Minagawa, M. and Kakazu, Y.: A Study
on Robot Task Plan Generation: A heuristic
Approach by GA, Proceedings of 69th JSME
Fall Annual Conference, pp.594-596, JSME
(1991).

(13) Nilsson, N.].: Principles of Artificial Intel-
ligence, p.476, Tioga (1980).

(14) Sacerdoti, E.D.: A structure for Plans and
Behavior, p.126, Elsevier (1977). V

(15) Sacerdoti, E.D.: The Nonlinear Nature of
Plans, Readings in Planning, pp.162-170,
Morgan Kaufmann (1990).

(16) Suh, J.Y.: Incorporating Heuristic Infor-
mation Into Genetic Search, Proceedings of
the 2nd ICGA, pp.100-107, LEA (1987).

(17) Suh, J.Y.. Operator-Oriented Genetic Al-
gorithm and Its Application to Sliding Block
Puzzle Problem, Parallel Problem Solving
From Nature 1, pp.98-103, Springer (1990).

(18) Tate, A. et al.: A Review of Al Planning
Techniques, Readings in Planning, pp.26-49,
Morgan Kaufmann (1990).

(19) Whitehead, S.D. and Ballard, D.H.: Active
Perception and Reinforcement Learning,
Proceedings of the Seventh International
Conference on Machine Learning, pp.179-
188, Morgan Kaufmann (1990).

