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An integral representation of Wiener-Shannon formula is derived

from the Euler’s integral representation of Gaussian hypergeometric

function.

The formula accounts for the available speed of informa-

tion transmission through band-limited, additive white Gaussian

channels.

The representation allows one to define, analogously to

Newton mechanics, the instantaneous acceleration of information

flow in the channels.

In recent years, concepts of Shannon’s
information theory (Shannon & Weaver,
1949) were applied to various contexts of
physics. Typical examples are seen in
quantum-mechanical problems (Partovi,
1990: 357; Bialynicki-Birula et al., 1992: 75),
random matrix theory of Gaussian orth-
ogonal ensembles (Ichimura et al., 1993: 80),
statistical analyses of strange attractors
and fractals (Crutchfield & Packard, 1982;
Grassberger & Procaccia, 1984; Wales,
1991), DNA linguistics (Mantegna et al.,
1994), nuclear giant resonances (Drozdz et
al., 1995), and quantum optics (Vaccaro &
Orlowski, 1995).

that, of many formulas presented by Shan-

It is worth stressing here

non, one of the most famous and beautiful
relations is that termed Wiener-Shannon
formula (WSF)(Shannon & Weaver, 1949;
Fano, 1961: 159). [Note that in a certain
context this formula was termed different-
ly. For instance, Brillouin terms this
Hartley-Tuller-Shannon formula, Tuller-
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(Brillouin,
1956).] The formula accounts for the

available speed of information transmis-

Shannon formula for short

sion through band-limited, additive white
Gaussian channels. It is interesting to
note that more recently relations similar to
the original WSF were given in the context
of dynamical chaos (Kravtsov, 1989: 44) and
chaotic information processing (Nara &
Davis, 1990: 230) as well as in that of fuzzy
set theory (Klir & Ywuan, 1995: 60).

the WSF provides the speed of information

Since

transmission, it may be natural for physi-
cists to pose a question: Is there a concept
corresponding to the acceleration of infor-
mation transmission? If so, how is it defin-
able? In this Short Article, through deri-
vation of a compact integral representation
of the WSF, it is shown that an effective
acceleration of information flow in the
channels can be introduced in information
theory.

According to Fano’s notation (Fano,
1961: 159) the WSF can be presented in the
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following theorem: If the input probability
distribution is subject to the requirement
that the ensemble average of the time
average of u®(t) be at most equal to some

value S, that is,
fu | ul?p dU<S, (1)

the capacity of a band-limited channel with

additive white Gaussian noise is
C=W log, [1+S/(N,W)] bit/sec, (2)

where W [sec™] is the width of the speci-
fied band and N,W [W] is the average
noise power in the band. Here C is defined
as the maximum value of the average
mutual information per second, evaluated
over all values of time, and all probability
distributions p(u) satisfying eq. (1). The
value of C increases monotonically with
increasing W; note that C — S/(N, In 2) as
W —co. The proof of this theorem can be
made through application of the maximum
entropy theorem (Shannon & Weaver, 1949;
Fano, 1961: 159).

First we note that the logarithmic
function in the WSF of eq. (2) can be
written in terms of Gaussian hyper-

geometric function F (a, b, ¢; z)
n(l—2z)=—zF (1, 1, 2; z), (3)

where z=—S/(N,W) and In=log.. Note
that the hypergeometric function can be
defined through a single definite integral

termed Euler’s integral representation
(Abramowitz & Stegun, 1965)
. T (C w-
F (a, b, c; z)= T ®) T (cb) !
X(1—u) "t (1—uz)™® du. (4)

From egs. (3) and (4) we obtain the identity
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In (lfz):fzﬁ1 (1—uz)™* du, (5)

where T" (£) is the complete gamma func-
tion with argument &.  Hence, from egs. (2)
and (5) with z=—S/(N,W) and z=(N,/S)

(1/u—1), we derive an integral formula

C=K '[c(rvLNO/S)*l
X (- No/S+ W) de, 6)

(In 2)°*. Note that the dimen-
sion of 7 is second. Mathematically eq. (6)

where K=

is a correlation between (z+N,/S)~! and
(z+No/S+W-H L,

understand from eq. (6) that the channel

Thus one can readily

capacity per second increases with increas-
ing either W or S/N,.
C [bit/sec] indicates the speed of informa-

Since the capacity

tion transmission, the integrand of eq. (6)
may become an analog of the instantaneous
(time-dependent) acceleration « (z) [bit/
sec?] of information transmission in band-

limited, additive white Gaussian channels:

a(r)=K(z+N,/S) " (z+N,/S+W)!
(7)

The acceleration given by eq. (7) decreases
monotonically with increasing z; as 7 —o©
it exhibits square-law decay: « (z)~K 772

In analogy to the Newton’s second law
of motion, eq. (7) might be identifiable with
an instantaneous “force” per unit mass,
though one could not define explicitly the
in the

The definition relation

concept of mass information-
theoretic context.
of eq. (7) permits of an instantaneous veloc-

ity of information transmission:

\% (T)ZA‘Ta/ (7) dz. (8)

Substitution of eq. (7) into eq. (8) yields
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v (z)=W log. {[1+S/(N0W)J
X(7+Ny/S)z+Ny/S+W-1H)~1}(9)

Obviously C=v (©) > v (7), which indi-
cates that as = —co the information veloc-
ity approaches monotonically the channel
capacity per second.

According to Shannon’s theorem of
channel coding (Shannon & Weaver, 1949)
the information transmission rate (the
information rate for short), R[bit/sec],
must not exceed C, i. e.,, R < C, provided
that the bit error rate can be suppressed in
an optional fashion. Since from eq. (9) v
(7) shows the univalent correspondence to
7, with R=v (z) we can obtain an expres-

sion of 7 in terms of R:

=28 W/[1+S/(N,W)
—2RW] —N,/S. (10

Note that as R — C, 7 —o,

Now that information velocity has
been given by eq. (9), the conservation law
of “mechanical energy” allows one to
define an analog of the potential energy per

unit mass for the information transmission:
U (0)={C*—[v (v)]?}/2. (1)

This relation indicates that the potential
energy decreases monotonically with
increasing 7; eventually U (z)— 0 as 7 —oo.
Evidently the physical meaning of eq. (11) is
consistent with what the Shannon’s theo-
rem of channel coding (Shannon & Weaver,
1949) implies.

In conclusion, through derivation of an
integral representation of the WSF, it has
been shown that an effective acceleration
of information transmission can be
in the

introduced information-theoretic
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context. The acceleration thus defined
has been shown to exhibit a long-time tail

with an inverse square-law profile.
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